Русская инженерная фирма Комплексные Технологии Комфорта
г. Новороссийск,
ул. Куникова, 28а, офис 34
(8617) 616-777
Проверка слова
www.gramota.ru

Продукция и услуги

Вентоборудование Электроснабжение ЭТЛ Встроенные пылесосы Разумный воздух Учебный центр
ЭкодомФреоны и масла Холодильная техника Теплые полы ЭлектромобилиКлимат для вина
Магия аромата Отопление Тюнинг кондиционеров Новейшие Технологии Учебные семинары «Энергосбережение 200.»Техобслуживание инженерного оборудования и сетей

Новейшие технологии

Что лучше TSM Ceramiс Выставка бот-шоу 2008 Серия Zubadan Собственные разработки РИФ "КТК"

Учим японский вместе с DAIKIN: У-РУ-РУ и СА-РА-РА

Cерия ZUBADAN

Компания Mitsubishi Electric представляет системы серии ZUBADAN. На японском языке это обозначает «супер обогрев». Известно, что производительность тепловых насосов, использующих для обогрева помещений низкопотенциальное тепло наружного воздуха, уменьшается при снижении температуры наружного воздуха. И это снижение весьма значительное: при температуре -20°С теплопроизводительность на 40% меньше номинального значения, указанного в спецификациях приборов и измеренного при температуре +7°С. Именно по этой причине воздушные тепловые насосы не рассматривают в нашей стране как полноценный нагревательный прибор. Отношение к ним может коренным образом измениться с появлением кондиционеров серии ZUBADAN.

Кондиценеры Zubadan
* На фотографии показаны модели для внутреннего рынка Японии. Внешний вид европейских моделей несколько отличается.

Стабильная теплопроизводительность

Теплопроизводительность полупромышленных систем Mitsubishi Electric серии ZUBADAN сохраняет номинальное значение вплоть до температуры наружного воздуха -15°С. При дальнейшем понижении температуры (завод-изготовитель гарантирует работоспособность системы до температуры -25°С) теплопроизводительность начинает уменьшаться. Но при этом сохраняется преимущество, как перед обычными системами, так и перед энергоэффективными системами серии POWER INVERTER.

На 30% выше, чем более мощная модель (5HP) серии Power Inverter Гарантированная производителем минимальная температура наружного воздуха составляет -25С.

Комфортный обогрев помещения

Алгоритм управления цепью инжекции может быть оптимизирован с целью достижения максимальной теплопроизводительности, например, при пуске системы в холодном помещении. Другой режим, в котором важна максимальная производительность – это режим оттаивания наружного теплообменника (испарителя). Режим оттаивания, избежать которого в тепловых насосах с воздушным охлаждением невозможно, происходит быстро и совершенно незаметно для пользовате ля.

Максимальная теплопроизводительность при пуске
Температура наружного воздуха +2 Температура наружного воздуха -20
Управление режимом оттаивания
Результаты полевых испытаний в г. Асахикава (остров Хоккайдо, Япония)
Результаты полевых испытаний в г. Асахикава (остров Хоккайдо, Япония)
Пример эксплуатации наружного блока
Пример эксплуатации наружного блока

Уникальная технология двухфазного впрыска хладагента в компрессор обеспечивает стабильную теплопроизводительность при понижении температуры наружного воздуха.

Пример эксплуатации наружного блока
Пример эксплуатации наружного блока

В системах ZUBADAN применяется метод парожидкостной инжекции. В режиме обогрева давление жидкого хладагента, выходящего из конденсатора, роль которого выполняет теплообменник внутреннего блока,немного уменьшается с помощью расширительного вентиля LEV B. Парожидкостная смесь (точка 3) поступает в ресивер «Power Receiver». Внутри ресивера проходит линия всасывания, и осуществляется обмен теплотой с газообразным хладагентом низкого давления. За счет этого температура смеси снова понижается (точка 4) и жидкость поступает на выход ресивера.Далее некоторое количество жидкого хладагента ответвляется через расширительный вентиль LEV C в цепь инжекции - теплообменник HIC. Часть жидкости испаряется, а температура образующейся смеси понижается. За счет этого охлаждается основной поток жидкого хладагента, проходящий через теплообменник HIC (точка 5). После дросселирования с помощью расширительного вентиля LEV A (точка 6) смесь жидкого хладагента и образовавшегося в процессе понижения давления пара поступает в испаритель, то есть теплообменник наружного блока. За счет низкой температуры испарения тепло передается от наружного воздуха к хладагенту, и жидкая фаза в смеси полностью испаряется (точка 7). Проходя через трубу низкого давления в ресивере «Power Receiver», перегрев газообразного хладагента увеличивается, и он поступает в компрессор. Кроме того, этот ресивер сглаживает колебания промежуточного давления при флуктуациях внешней тепловой нагрузки, а также гарантирует подачу на расширительный вентиль цепи инжекции только жидкого хладагента, что стабилизирует работу этой цепи.

Часть жидкого хладагента, ответвленная от основного потока в цепь инжекции, превращается в парожидкостную смесь среднего давления. При этом температура смеси понижается, и она подается через специальный штуцер инжекции в компрессор.

Расширительный вентиль LEV B задает величину переохлаждения хладагента в конденсаторе. Вентиль LEV A определяет перегрев в испарителе, а LEV C поддерживает температуру перегретого пара на выходе компрессора около 90°С. Это происходит за счет того, что, попадая через цепи инжекции в замкнутую область между спиралями компрессора, двухфазная смесь перемешивается с газообразным горячим хладагентом, и жидкость из смеси полностью испаряется. Температура газа понижается. Регулируя состав парожидкостной смеси, можно контролировать температуру нагнетания компрессора. Это позволяет не только избежать перегрева компрессора, но и оптимизировать теплопроизводительность конденсатора.

a b
Инжекция жидкого хладагента создает существенную нагрузку на компрессор, снижая его энергетическую эффективность. Для уменьшения этой нагрузки введен теплообменник HIC. Передача теплоты между потоками хладагента с разными давлениями приводит к тому, что часть жидкости испаряется. Образовавшаяся парожидкостная смесь при инжекции в компрессор создает меньшую дополнительную нагрузку. Парожидкостная смесь, прошедшая теплообменник HIC, поступает через штуцер инжекции в компрессор. Таким образом, компрессор имеет два входа: штуцер всасывания и штуцер инжекции. Управляя расходом хладагента в цепи инжекции, удается увеличить циркуляцию хладагента через компрессор при низкой температуре наружного воздуха, тем самым повышая теплопроизводительность системы. В верхней неподвижной спирали компрессора предусмотрены отверстия для впрыска хладагента на промежуточном этапе сжатия.